Extensions 1→N→G→Q→1 with N=C22xS3 and Q=C3xS3

Direct product G=NxQ with N=C22xS3 and Q=C3xS3
dρLabelID
S32xC2xC648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=C22xS3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C22xS3):(C3xS3) = C3xS3xS4φ: C3xS3/C3S3 ⊆ Out C22xS3246(C2^2xS3):(C3xS3)432,745
(C22xS3):2(C3xS3) = S32xA4φ: C3xS3/S3C3 ⊆ Out C22xS32412+(C2^2xS3):2(C3xS3)432,749
(C22xS3):3(C3xS3) = C6xD6:S3φ: C3xS3/C32C2 ⊆ Out C22xS348(C2^2xS3):3(C3xS3)432,655
(C22xS3):4(C3xS3) = C6xC3:D12φ: C3xS3/C32C2 ⊆ Out C22xS348(C2^2xS3):4(C3xS3)432,656
(C22xS3):5(C3xS3) = C3xS3xC3:D4φ: C3xS3/C32C2 ⊆ Out C22xS3244(C2^2xS3):5(C3xS3)432,658

Non-split extensions G=N.Q with N=C22xS3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C22xS3).(C3xS3) = C3xD6:Dic3φ: C3xS3/C32C2 ⊆ Out C22xS348(C2^2xS3).(C3xS3)432,426
(C22xS3).2(C3xS3) = S3xC6xDic3φ: trivial image48(C2^2xS3).2(C3xS3)432,651

׿
x
:
Z
F
o
wr
Q
<