Extensions 1→N→G→Q→1 with N=C22×S3 and Q=C3×S3

Direct product G=N×Q with N=C22×S3 and Q=C3×S3
dρLabelID
S32×C2×C648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=C22×S3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊(C3×S3) = C3×S3×S4φ: C3×S3/C3S3 ⊆ Out C22×S3246(C2^2xS3):(C3xS3)432,745
(C22×S3)⋊2(C3×S3) = S32×A4φ: C3×S3/S3C3 ⊆ Out C22×S32412+(C2^2xS3):2(C3xS3)432,749
(C22×S3)⋊3(C3×S3) = C6×D6⋊S3φ: C3×S3/C32C2 ⊆ Out C22×S348(C2^2xS3):3(C3xS3)432,655
(C22×S3)⋊4(C3×S3) = C6×C3⋊D12φ: C3×S3/C32C2 ⊆ Out C22×S348(C2^2xS3):4(C3xS3)432,656
(C22×S3)⋊5(C3×S3) = C3×S3×C3⋊D4φ: C3×S3/C32C2 ⊆ Out C22×S3244(C2^2xS3):5(C3xS3)432,658

Non-split extensions G=N.Q with N=C22×S3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C22×S3).(C3×S3) = C3×D6⋊Dic3φ: C3×S3/C32C2 ⊆ Out C22×S348(C2^2xS3).(C3xS3)432,426
(C22×S3).2(C3×S3) = S3×C6×Dic3φ: trivial image48(C2^2xS3).2(C3xS3)432,651

׿
×
𝔽